

– Data Sheet —

AVP

Boiler Blowdown Valve Packages

AVP valve packages take the guess work out of blowdown plumbing configurations. AVP's are factory pre-assembled to meet your boiler application pressure requirements complete with the probe cross (probe not included) and correct pipe lengths between components. Make installations even easier using prefabricated option P and we will pre-wire and mount your controller.

Model Number

Electric Blowdown Valve

20 = SVB-050 ½" brass solenoid valve, 0-140 psi max
50 = MBV-050 motorized ball valve SS, 325 psi max
60 = SOB-½ brass solenoid valve, 0-140 psi max

Flow Restricting Device

00 = AOU-1 orifice union with 4 plates, 1000 psi
30 = NFC-½ needle flow control valve, 5000 psi max

Optional Features -

A = Adds second flow restricting device for continuous sampling

 $C = \frac{3}{4}$ " probe tee instead of 1"

F = Add a ¾" flush ball valve on bottom of probe cross
 Y1 = Add Y-strainer with flush valve before blowdown valve

P = Mount AVP and separately ordered controller onto poly board and pre-wire

P1 = Mount AVP and separately ordered controller & sample cooler onto poly board & pre-wire

Note: Change 2nd digit of code to 1 for 3/4" connection, if available add individual valve price difference: AVP-61-11

Specifications

The specifications of your AVP will depend on the individual items selected. The total shipping weight will be the total of the two valves selected plus approximately 9 pounds (Option P will be more).

MBV

Max Fluid Temp	459°F
Max Boiler Pressure	325 PSIG
Valve Body	. Carbon Steel
Ball & Stem	316 SS
Seals	Teflon
Shipping Weight	9 lbs.
Actuator Ambient Max	150°F
Standard Electrical120	VAC 2.3 Amp
Sizes Available	1/2" & 3/4"

SOB

Max Fluid Temp	356°F
Max Boiler Pressure	.0-140 PSIG
Valve Body	Brass
Seals	Teflon
Shipping Weight	3 lbs.
Standard Electrical	120 VAC
Sizes Available	1/2" & 3/4"

SVB-050

Max Fluid Temp	366°F
Max Boiler Pressure	
Valve Body	Brass
Seals	Teflon
Shipping Weight	3 lbs.
Standard Electrical	120 VAC
Size Available	

NFC

Max Fluid Temp	600°F
Max Boiler Pressur	e 5,000 PSIG
Body	Carbon Steel
Stem	304 Stainless Steel
Shipping Weight	4 lbs.
Sizes Available	

AOU-1

700 1	
Max Fluid Temp	500°F
Max Boiler Pressu	re 1000 PSIG
Body	Carbon Steel
Plates	316 Stainless Steel
Orifice Sizes	1/8", 3/16", 1/4", 5/16"
Shipping Weight	3 lbs.
Sizes Available	³ ⁄ ₄ " & 1"

Boiler Blowdown Requirement Calculation

A boiler's blowdown configuration (timed or continuous) is determined by the blowdown requirement in pounds of steam per hour. Using the following information:

- Boiler steam output H.P. x 34.5 = steam output/ hour
- Make-up of water in pounds/hour based on percentage of return condensate
- 3. Cycles of conductivity concentration

Steam output/hr x
$$\left(1 - \frac{\% \text{ Condensate}}{100\%}\right)$$
 = Make-up water (lbs/hr).

Make-up x
$$\left(\frac{1}{\text{Cycles - 1}} \right)$$
 = Blowdown required (lbs/hr).

Boilers under 5,000 lbs/hr blowdown use timed sampling. If over 5,000 lbs/hr, continuous sampling is recommended.